Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomicro Lett ; 16(1): 111, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321305

RESUMEN

Hydrogen evolution reaction (HER) has become a key factor affecting the cycling stability of aqueous Zn-ion batteries, while the corresponding fundamental issues involving HER are still unclear. Herein, the reaction mechanisms of HER on various crystalline surfaces have been investigated by first-principle calculations based on density functional theory. It is found that the Volmer step is the rate-limiting step of HER on the Zn (002) and (100) surfaces, while, the reaction rates of HER on the Zn (101), (102) and (103) surfaces are determined by the Tafel step. Moreover, the correlation between HER activity and the generalized coordination number ([Formula: see text]) of Zn at the surfaces has been revealed. The relatively weaker HER activity on Zn (002) surface can be attributed to the higher [Formula: see text] of surface Zn atom. The atomically uneven Zn (002) surface shows significantly higher HER activity than the flat Zn (002) surface as the [Formula: see text] of the surface Zn atom is lowered. The [Formula: see text] of surface Zn atom is proposed as a key descriptor of HER activity. Tuning the [Formula: see text] of surface Zn atom would be a vital strategy to inhibit HER on the Zn anode surface based on the presented theoretical studies. Furthermore, this work provides a theoretical basis for the in-depth understanding of HER on the Zn surface.

2.
Small ; : e2310756, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361223

RESUMEN

P2-phase layered cathodes play a pivotal role in sodium-ion batteries due to their efficient Na+ intercalation chemistry. However, limited by crystal disintegration and interfacial instability, bulk and interfacial failure plague their electrochemical performance. To address these challenges, a structural enhancement combined with surface modification is achieved through trace Y doping. Based on a synergistic combination of experimental results and density functional theory (DFT) calculations, the introduction of partial Y ions at the Na site (2d) acts as a stabilizing pillar, mitigating the electrostatic repulsions between adjacent TMO2 slabs and thereby relieving internal structural stress. Furthermore, the presence of Y effectively optimizes the Ni 3d-O 2p hybridization, resulting in enhanced electronic conductivity and a notable rapid charging ability, with a capacity of 77.3 mA h g-1 at 40 C. Concurrently, the introduction of Y also induces the formation of perovskite nano-islands, which serve to minimize side reactions and modulate interfacial diffusion. As a result, the refined P2-Na0.65 Y0.025 [Ni0.33 Mn0.67 ]O2 cathode material exhibits an exceptionally low volume variation (≈1.99%), an impressive capacity retention of 83.3% even at -40 °C after1500 cycles at 1 C.

3.
Small ; 20(7): e2305817, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37814379

RESUMEN

Complete ethanol oxidation reaction (EOR) in C1 pathway with 12 transferred electrons is highly desirable yet challenging in direct ethanol fuel cells. Herein, PtRh jagged nanowires synthesized via a simple wet-chemical approach exhibit exceptional EOR mass activity of 1.63 A mgPt-1 and specific activity of 4.07 mA cm-2 , 3.62-fold and 4.28-folds increments relative to Pt/C, respectively. High proportions of 69.33% and 73.42% of initial activity are also retained after chronoamperometric test (80 000 s) and 1500 consecutive potential cycles, respectively. More importantly, it is found that PtRh jagged nanowires possess superb anti-CO poisoning capability. Combining X-ray absorption spectroscopy, X-ray photoelectron spectroscopy as well as density functional theory calculations unveil that the remarkable catalytic activity and CO tolerance stem from both the Rh-induced electronic effect and geometric effect (manifested by shortened Pt─Pt bond length and shrinkage of lattice constants), which facilitates EOR catalysis in C1 pathway and improves reaction kinetics by reducing energy barriers of rate-determining steps (such as *CO → *COOH). The C1 pathway efficiency of PtRh jagged nanowires is further verified by the high intensity of CO2 relative to CH3 COOH/CH3 CHO in infrared reflection absorption spectroscopy.

4.
Chemistry ; 30(3): e202303211, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37909248

RESUMEN

Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention. However, due to the uneven distribution of charge density at Zn anode-electrolyte interface, severe dendrites and corrosion are generated during cycling. In this work, a facile and scalable strategy to address the above-mentioned issues has been proposed through regulating the charge density at Zn anode-electrolyte interface. As a proof of concept, amidinothiourea (ATU) with abundant lone-pair electrons is employed as an interfacial charge modifier for Zn anode-electrolyte interface. The uniform and increased interfacial charge distribution on Zn anode-electrolyte interface has been obtained. Moreover, the unique Zn-bond constructed between N atoms and Zn2+ as well as the hydrogen bonds are formed among ATU and Ac- anion/active H2 O, which promote the migration and desolvation behavior of Zn2+ at anode-electrolyte interface. Accordingly, at a trace concentration of 0.01 mg mL-1 ATU, these features endow Zn anode with a long cycling life (more than 800 h), and a high average Columbic efficiency (99.52 %) for Zn||Cu batteries. When pairing with I2 cathode, the improved cycling ability (5000 cycles) with capacity retention of 77.9 % is achieved. The fundamental understanding on the regulation of charge density at anode-electrolyte interface can facilitate the development of AZIBs.

5.
Adv Mater ; 36(11): e2308086, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37830986

RESUMEN

Zn-ion batteries (ZIBs) have long suffered from the unstable Zn metal anode, which faces numerous challenges concerning dendrite growth, corrosion, and hydrogen evolution reaction. The absence of H2 O adsorption control techniques has become a bottleneck for the further development of ZIBs. Using the stearic acid (SA)-modified Cu@Zn (SA-Cu@Zn) anode as an example, this work illustrates how the lotus effect controls the H2 O adsorption energy on the Zn metal anode. In situ integrated Cu nanorods arrays and hydrophobic long-chain alkyl groups are constructed, which provide zincophilic ordered channels and hydrophobic property. Consequently, the SA-Cu@Zn anode exhibits long-term cycling stability over 2000 h and high average Coulombic efficiency (CE) of 99.83% at 1 mA cm-2 for 1 mAh cm-2 , which improves the electrochemical performance of the Zn||V2 O5 full cell. Density functional theory (DFT) calculations combined with water contact angle (CA) measurements demonstrate that the SA-Cu@Zn exhibits larger water CA and weaker H2 O adsorption than Zn. Moreover, the presence of Cu ensures the selective adsorption of Zn on the SA-Cu@Zn anode, well explaining how the excellent reversibility is achieved. This work demonstrates the effectiveness of the lotus effect on controllable H2 O adsorption and Zn deposition mechanism, offering a universal strategy for achieving stable ZIB anodes.

6.
Dalton Trans ; 52(34): 11904-11912, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37564013

RESUMEN

Electrochemical reduction of carbon dioxide (CO2ER) has become an effective solution to relieve the energy crisis and tackle climate change. In this study, a series of tin-based organic frameworks modified by In (Sn-MOF/Inx) were successfully synthesized via a simple hydrothermal method and explored for high formate-selective CO2ER. The pure Sn-MOF exhibits maximum formate selectivity with a faradaic efficiency (FEformate) of approximately 85.0% and a current density of 15 mA cm-2 at -1.16 VRHE, while the In (6%)-modified Sn-MOF (Sn-MOF/In6) delivers a much higher maximum FEformate (around 97.5%) and a current density of 16 mA cm-2 at -0.96 VRHE. Remarkably, the Sn-MOF/In6 exhibits a significantly larger specific surface area (183.3 m2 g-1) compared to the Sn-MOF (65.2 m2 g-1). These findings indicate that introducing In, an alien element with a slightly different outer orbital electron number from that of Sn, can significantly boost the selectivity and activity for CO2ER to formate. This study presents an efficient way to modify MOF catalysts through a well-designed introducing process.

7.
Dalton Trans ; 52(25): 8778-8783, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37318034

RESUMEN

Electrocatalytic CO2 reduction (ECR) has the potential to generate low-carbon fuels that can alleviate energy scarcity and reduce greenhouse gas emissions. In this study, we prepared a range of Pb-Zn bimetallic catalysts with a core-shell structure using a simple chemical reduction technique based on the differing activity characteristics of the metals. The highest faradaic efficiency for formate (FEformate) was achieved using Pb3Zn1 as the catalyst, with a value of 95.3% at -1.26VRHE in an H-cell (0.5 M KHCO3) and a current density of 11.18 mA cm-2. Notably, in the flow-cell (1 M KOH), FEformate exceeded 90% across a wide potential window, with a maximum FEformate value of 98.4% being achieved. The excellent catalytic performance of the bimetallic catalyst is attributed to its larger specific surface area and faster ECR kinetics, and the synergistic interaction between Pb and Zn improves the selectivity for formate production.

8.
J Am Chem Soc ; 145(20): 11140-11150, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37161344

RESUMEN

High-entropy solid-solution alloys have generated significant interest in energy conversion technologies. However, structurally ordered high-entropy intermetallic (HEI) nanoparticles (NPs) have been rarely reported in electrocatalysis applications. Here, we demonstrate structurally ordered PtIrFeCoCu HEI (PIFCC-HEI) NPs with extremely superior performance for both oxygen reduction reaction (ORR) and H2/O2 fuel cells. The PIFCC-HEI NPs show an average diameter of 6 nm. Atomic structural characterizations including atomic-resolution energy-dispersive spectroscopy (EDS) mapping technology confirm the ordered intermetallic structure of PIFCC-HEI NPs. As an electrocatalyst for ORR, the PIFCC-HEI/C achieves an ultrahigh mass activity of 7.14 A mgnoble metals-1 at 0.85 V and extraordinary durability over 60 000 potential cycles. Moreover, the fuel cell assembled with PIFCC-HEI/C as the cathode delivers an ultrahigh peak power density of 1.73 W cm-2 at a back pressure of 1.0 bar and almost no working voltage decay after 80 h operation, certifying the top-level performance among reported fuel cells. Theoretical calculations combined with experimental results reveal that the superior performance of PIFCC-HEI/C for ORR and fuel cells is attributed to its ultrahigh-activity facets. Especially, the (001) facet affords the lowest activation barriers for the rate-limiting step, the optimal downshift of the d-band center, and more efficient regulation of electron structures for ORR. This work not only opens up a new avenue for the fabrication of high-activity facets in the catalysts but also highlights structurally ordered HEI NPs as sufficiently effective catalysts in practical fuel cells and other potential energy-related applications.

9.
Dalton Trans ; 52(13): 4136-4141, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36883983

RESUMEN

A series of Pb-Sn catalysts were synthesized via facile chemical reduction for electrocatalytic CO2 reduction (ECR). The optimized sample (Pb7Sn1) achieved 90.53% formate faradaic efficiency (FE) at a potential of -1.9 V vs. Ag/AgCl. Electrochemical and material evaluation reveals that its high performance can be attributed to the rich active sites exposed by the high specific surface area of the electrode. In addition, the synergy between Pb and Sn is also a strong contributor to the high selectivity of formate. This work provides some insights into the preparation of simple and efficient ECR catalysts.

10.
J Am Chem Soc ; 145(9): 5174-5182, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36757130

RESUMEN

Layered Li-rich oxides (LROs) that exhibit anionic and cationic redox are extensively studied due to their high energy storage capacities. However, voltage hysteresis, which reduces the energy conversion efficiency of the battery, is a critical limitation in the commercial application of LROs. Herein, using two Li2RuO3 (LRO) model materials with C2/c and P21/m symmetries, we explored the relationship between voltage hysteresis and the electronic structure of Li2RuO3 by neutron diffraction, in situ X-ray powder diffraction, X-ray absorption spectroscopy, macro magnetic study, and electron paramagnetic resonance (EPR) spectroscopy. The charge-transfer band gap of the LRO cathode material with isolated eg electron filling decreases, reducing the oxidation potential of anion redox and thus displaying a reduced voltage hysteresis. We further synthesized Mn-based Li-rich cathode materials with practical significance and different electron spin states. Low-spin Li1.15Ni0.377Mn0.473O2 with isolated eg electron filling exhibited a reduced voltage hysteresis and high energy conversion efficiency. We rationalized this finding via density functional theory calculations. This discovery should provide critical guidance in designing and preparing high-energy layered Li-rich cathode materials for use in next-generation high-energy-density Li-ion batteries based on anion redox activity.

11.
iScience ; 26(1): 105890, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36691611

RESUMEN

Searching for an efficient, durable, and low cost catalyst toward oxygen reduction reaction (ORR) is of paramount importance for the application of fuel cell technology. Herein, PtFeCoNiCu high-entropy alloy nanoparticles (PFCNC-HEA) is reported as electrocatalyst toward ORR. It shows remarkable ORR catalytic mass activity of 1.738 A mg-1 Pt at 0.90 V, which is 15.8 times higher than that of the state-of-art commercial Pt/C catalyst. It also exhibits outstanding stability with negligible voltage decay (3 mV) after 10k cycles accelerated durability test. High ORR activity is ascribed to the ligand effect caused by polymetallic elements, the optimization of the surface electronic structure, and the formation of multiple active sites on the surface. In the proton exchange membrane fuel cell setup, this cell delivers a power density of up to 1.380 W cm-2 with a cathodic Pt loading of 0.03 mgPt cm-2, demonstrating a promising catalyst design direction for highly efficient ORR.

12.
ACS Appl Mater Interfaces ; 15(5): 6839-6847, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36700800

RESUMEN

Aqueous zinc ion battery is a potential alternative for a stationary energy storage system owing to the inherent properties of the Zn anode. However, the Zn anode suffers from serious Zn dendrite due to the uneven Zn plating. Thus, inspired by the nano-drug delivery to the target site of the tumor cell, it would be a promising strategy to introduce targeted delivery of zinc ion in the electrolyte for even Zn plating. Passive targeted transport plays an important role in nano-drug delivery, which presents the nano-drug would be released by the nano-drug carrier based on polymer to the particular target site. As a proof-of-concept, a pseudopolyrotaxane conducting the nano-drug carrier applied in targeted cancer therapy is employed as the gel polymer electrolyte (GPE) for long-life Zn anodes. The pseudopolyrotaxane is formed by the self-assembling of α-cyclodextrin (CD) and poly(ethylene oxide), where the zinc ion can be absorbed and delivered to the target site of the Zn anode benefiting from the hydrogen-bond. Impressively, even Zn plating can be induced by the hydroxyl groups of CD to inhibit Zn dendrite. Moreover, the hydrogen evolution reaction is suppressed by the GPE. Less produced H2 is detected in the GPE, which is demonstrated by the online mass spectrometry. Thus, the Zn||Zn symmetrical cell based on the GPE exhibits a cycling life of 1370 h. Compared to the one based on aqueous electrolyte, Zn||MnO2 battery based on the GPE shows a higher capacity retention. This work is expected to avail the development of the aqueous zinc ion battery.

13.
Adv Mater ; 35(7): e2208726, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36385715

RESUMEN

Layered Li-rich cathode materials with high reversible energy densities are becoming prevalent. However, owing to the activation of low-potential redox couples and the progressively irreversible structural transformation caused by the local adjustment of transition-metal ions in the intra/interlayer driven by anionic redox, continuous capacity degradation, and voltage decay emerge, thus greatly reducing the energy density and increasing the difficulty of battery system management. Herein, layered Li-rich cathode materials with higher intralayer configuration entropy have more local structural diversity and higher distortion energy, resulting in superior local structural adaptability with no drastic redox couple evolution, major local structural adjustment, or obvious layered-to-spinel phase transition. Consequently, the energy retention of the entropy-stabilization-strategy-enhanced Li-rich cathode materials is almost twice that of a typical Li-rich cathode material (Li1.20 Mn0.54 Ni0.13 Co0.13 O2 , T-LRM) after 3 months of cyclic testing. Moreover, when cycled at 1 C, the voltage degradation per cycle is less than 0.02%, that is, it results in a voltage loss of only 0.8 mV per cycle, which is excellent performance. This study paves the way for the development of Li-rich cathode materials with stabilized intralayer atomic arrangements and high local structural adaptability.

14.
ACS Appl Mater Interfaces ; 14(48): 53648-53657, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36411718

RESUMEN

A composite solid-state electrolyte (SSE) with acceptable safety and durability is considered as a potential candidate for high-performance lithium-oxygen (Li-O2) batteries. Herein, to address the safety issues and improve the electrochemical performance of Li-O2 batteries, a solvent-free composite SSE is prepared based on the thermal initiation of poly(ethylene glycol) diacrylate radical polymerization, and an integrated battery is achieved by injecting an electrolyte precursor between electrodes during the assembly process through a simple heat treatment. The Li-metal symmetric cells based on this composite SSE achieve a critical current density of 0.8 mA cm-2 and a stable cycle life of over 900 h at a current density of 0.2 mA cm-2. This composite SSE effectively inhibits the erosion of O2 on the Li metal anode, optimizes the interface between the electrolyte and cathode, and provides abundant reaction sites for the electrochemical reactions during cycling. The integrated solid-state Li-O2 battery prepared in this work achieves stable long cycling (118 cycles) at a current density of 500 mA g-1 at room temperature, showing the promising future application prospects.

15.
ACS Appl Mater Interfaces ; 14(30): 34612-34619, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35867002

RESUMEN

Owing to the inherent properties of aqueous electrolytes, aqueous zinc-ion batteries are considered to be a promising energy storage system. Unfortunately, the water-induced issues, such as hydrogen evolution and corrosion reaction, inevitably occur on the Zn anode surface during cycling, which leads to poor electrochemical performance. The gel polymer electrolyte would reduce the parasitic reactions associated with water. However, the nondegradable polymer is harmful to the environment. Herein, with the aim to alleviate the serious issues derived from water and environmental problems, a biodegradable gum arabic has been proposed to serve as a hydrogel electrolyte for aqueous zinc-ion batteries. The electrochemical activity of water could be reduced by the hydrogen-bond network between the gum arabic and water. Thus, the corrosion and hydrogen evolution reaction (HER) can be restrained by employing the prepared gel electrolyte. Evidenced by the online mass spectrometry, it is found that the less produced H2 is detected in the biodegradable gel electrolyte-based Zn||Zn symmetric cell during the processes of Zn plating/stripping, showing the inhibited HER. Moreover, the by-product on the Zn anode is barely observed during cycling when using the obtained gel electrolyte. Uniform zinc-ion distribution can be achieved to mitigate Zn dendrite growth in the gel electrolyte. Therefore, the Zn||Zn symmetric cell based on the gel electrolyte exhibits a long lifespan of more than 1300 h, which is longer than that in the aqueous electrolyte. Moreover, the Zn||LiFePO4 hybrid ion battery based on the gel electrolyte shows improved capacity retention by suppressing the reactions related to water.

16.
J Am Chem Soc ; 143(41): 17117-17127, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34554733

RESUMEN

The development of sufficiently effective catalysts with extremely superior performance for electrocatalytic hydrogen production still remains a formidable challenge, especially in acidic media. Here, we report ultrasmall high-entropy alloy (us-HEA) nanoparticles (NPs) with the best-level performance for hydrogen evolution reaction (HER). The us-HEA (NiCoFePtRh) NPs show an average diameter of 1.68 nm, which is the smallest size in the reported HEAs. The atomic structure, coordinational structure, and electronic structure of the us-HEAs were comprehensively clarified. The us-HEA/C achieves an ultrahigh mass activity of 28.3 A mg-1noble metals at -0.05 V (vs the reversible hydrogen electrode, RHE) for HER in 0.5 M H2SO4 solution, which is 40.4 and 74.5 times higher than those of the commercial Pt/C and Rh/C catalysts, respectively. Moreover, the us-HEA/C demonstrates an ultrahigh turnover frequency of 30.1 s-1 at 50 mV overpotential (41.8 times higher than that of the Pt/C catalyst) and excellent stability with no decay after 10 000 cycles. Operando X-ray absorption spectroscopy and theoretical calculations reveal the actual active sites, tunable electronic structures, and a synergistic effect among five elements, which endow significantly enhanced HER activity. This work not only engineers a general and scalable strategy for synthesizing us-HEA NPs and elucidates the complex structural information and catalytic mechanisms of multielement HEA system in depth, but also highlights HEAs as sufficiently advanced catalysts and accelerates the research of HEAs in energy-related applications.

17.
Nat Commun ; 11(1): 4973, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33009376

RESUMEN

Li-rich layered oxide cathode materials show high capacities in lithium-ion batteries owing to the contribution of the oxygen redox reaction. However, structural accommodation of this reaction usually results in O-O dimerization, leading to oxygen release and poor electrochemical performance. In this study, we propose a new structural response mechanism inhibiting O-O dimerization for the oxygen redox reaction by tuning the local symmetry around the oxygen ions. Compared with regular Li2RuO3, the structural response of the as-prepared local-symmetry-tuned Li2RuO3 to the oxygen redox reaction involves the telescopic O-Ru-O configuration rather than O-O dimerization, which inhibits oxygen release, enabling significantly enhanced cycling stability and negligible voltage decay. This discovery of the new structural response mechanism for the oxygen redox reaction will provide a new scope for the strategy of enhancing the anionic redox stability, paving unexplored pathways toward further development of high capacity Li-rich layered oxides.

18.
Nano Lett ; 20(8): 5779-5785, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32643943

RESUMEN

Continued improvement in the electrochemical performance of Li-Mn-O oxide cathode materials is key to achieving advanced low-cost Li-ion batteries with high energy densities. In this study, O2-type Li0.78[Li0.24Mn0.76]O2 nanowires were synthesized by a solvothermal reaction to produce P2-type Na5/6[Li1/4Mn3/4]O2 nanowires, which were then subjected to molten salt Li-ion exchange. The resulting nanowires have diameters less than 20 nm and lengths of several micrometers. The full-Mn-based nanowires cathode material delivers a reversible capacity of 275 mAh g-1 at 0.1 C and 200 mAh g-1 at a high current rate of 15 C with a capacity retention of more than 80% and the voltage decay was dramatically suppressed after 100 cycles. This excellent performance is ascribed to the highly stable oxygen redox reaction and lack of layered-to-spinel phase transition in the O2-type structure during cycling.

19.
Adv Mater ; 32(16): e2000190, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32130749

RESUMEN

The search for new high-performance and low-cost cathode materials for Li-ion batteries is a challenging issue in materials research. Commonly used cobalt- or nickel-based cathodes suffer from limited resources and safety problems that greatly restrict their large-scale application, especially for electric vehicles and large-scale energy storage. Here, a novel Li-Mn-O Li-rich cathode material with R 3 ¯ m symmetry is developed via intralayer Li/Mn disordering in the Mn-layer. Due to the special atomic arrangement and higher R 3 ¯ m symmetry with respect to the C2/m symmetry, the oxygen redox activity is modulated and the Li in the Li-layer is preferentially thermodynamically extracted from the crystal structure instead of Li in the Mn-layer. The as-obtained material delivers a reversible capacity of over 300 mAh g-1 at 25 mA g-1 and rate capability of up to 260 mAh g-1 at 250 mA g-1 within 2.0-4.8 V. The excellent performance is attributed to its highly structural reversibility, mitigation of Jahn-Teller distortion, lower bandgap, and faster Li-ion 2D channels during the lithium-ion de/intercalation process. This material is not only a promising cathode material candidate but also raises new possibilities for the design of low-cost and high-performance cathode materials.

20.
Nat Commun ; 10(1): 4514, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586070

RESUMEN

Nano-ordered intermetallic compounds have generated great interest in fuel cell applications. However, the synthesis of non-preciousearly transition metal intermetallic nanoparticles remains a formidable challenge owing to the extremely oxyphilic nature and very negative reduction potentials. Here, we have successfully synthesized non-precious Co3Ta intermetallic nanoparticles, with uniform size of 5 nm. Atomic structural characterizations and X-ray absorption fine structure measurements confirm the atomically ordered intermetallic structure. As electrocatalysts for the hydrazine oxidation reaction, Co3Ta nanoparticles exhibit an onset potential of -0.086 V (vs. reversible hydrogen electrode) and two times higher specific activity relative to commercial Pt/C (+0.06 V), demonstrating the top-level performance among reported electrocatalysts. The Co-Ta bridge sites are identified as the location of the most active sites thanks to density functional theory calculations. The activation energy of the hydrogen dissociation step decreases significantly upon N2H4 adsorption on the Co-Ta bridge active sites, contributing to the significantly enhanced activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...